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Introduction

Image Representation

How to obtain “good” image representations for image analysis and image
synthesis ?

Central problem in computer vision

Transfer Learning of the parameters of a model f trained with
supervised methods
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Introduction

Convolutional Neural Network (CNN)

Feed-forward artificial neural network

Use of convolutions

Trained by stochastic gradient descent

The CNN learns powerful internal representations during training

Given an input image, one can extract these internal representations
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Introduction

Introduction to Transfer learning

Definition: Training a machine learning algorithm on a particular task while
using knowledge the algorithm has already learned on a previous and
related task.
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Introduction

Different Transfer Learning Approaches of CNNs

Figure: Convolutional Neural Network InceptionV1 model [Szegedy et al., 2015]

Off-the-shelf Feature Extraction [Donahue et al., 2014]

Fine-Tuning [Girshick et al., 2014]

Training from scratch the same architecture
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Introduction

Off-the-shelf Feature Extraction

Pretrained on ImageNet New

Used by us for:

Weakly Supervised Object Detection task

Classification

Texture Synthesis
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Introduction

Fine-Tuning

Pretrained on ImageNet New

Used for:

Classification
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Introduction

Training from scratch

Random initialization

Used for:

Classification
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Introduction

Improvements of the CNN architectures

(a) AlexNet architecture, 8 layers

[Krizhevsky et al., 2012]

(b) VGG19 architecture 19 layers

[Simonyan and Zisserman, 2015]

(c) InceptionV1 architecture, 22 layers

[Szegedy et al., 2015]

(d) ResNet 152 architecture, 152 layers

[He et al., 2015]
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Introduction

Contributions

Weakly Supervised Learning:

Reduce the need for annotations: use only image level labels

Transfer Learning:

Evaluate the impact of fine-tuning for artworks databases

Texture Synthesis:

Preserve long-range organization of texture and improve the quality of
high resolution synthesis
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Weakly Supervised Object Detection

Multiple Instance Model for Weakly Supervised Object
Detection in Artworks

1 Introduction

2 Multiple Instance Model for Weakly Supervised Object Detection in
Artworks

3 Analyzing CNNs trained for Art classification tasks

4 Texture Synthesis with CNNs

5 Conclusion
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Weakly Supervised Object Detection Motivation

Motivation

Help to search artwork databases.
We would like to localize the object of interest

Saint Sebastian Saint Sebastian
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Weakly Supervised Object Detection Motivation

Motivation II

Use only image level annotation → Weakly supervised setup

Fast → No Fine Tuning

Recognize new classes (not available in photography)

Figure: Example images from our IconArt database, for the Saint Sebastian
category.
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Weakly Supervised Object Detection Weakly supervised detection by transfer learning

Transfer of a CNN

Use a Faster R-CNN network [Ren et al., 2015] pre-trained on
photography as an off-the-shelf features extractor
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Weakly Supervised Object Detection Weakly supervised detection by transfer learning

Multiple Instance Learning

To solve this weakly supervised problem, we use the Multiple Instance
Learning paradigm → Regions of an image = bag of elements

Figure: Some of the regions of interest generated by the region proposal part
(RPN) of Faster R-CNN.
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Weakly Supervised Object Detection Weakly supervised detection by transfer learning

Multiple Instance Learning

Figure: Illustration of positive and negative sets of detections (bounding boxes)
for the angel category.
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Weakly Supervised Object Detection Weakly supervised detection by transfer learning

Multiple Instance Learning

How to find the positive vectors in each positive bag?
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Weakly Supervised Object Detection Weakly supervised detection by transfer learning

How to choose the right region ?

Classical MIL classifier: mi-SVM and MI-SVM [Andrews et al., 2003]

Weakly Fine-Tuning the whole CNN: WSDDN, SPN and PCL
[Bilen and Vedaldi, 2016, Zhu et al., 2017, Tang et al., 2018]

Use the highest objectness score region:
MAX [Crowley and Zisserman, 2016] and MAXA [Our]

Use extra data from other domains: DT+ PL [Inoue et al., 2018]
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Weakly Supervised Object Detection Weakly supervised detection by transfer learning

Our Model: MI-max, a linear model

For each image i , we have:
{Xi ,k}{1..K} feature vectors

yi = ±1 a label

We look for w ∈ RM , b ∈ R minimizing:

L(w , b) =
N

∑
i=1

−yi
nyi

Tanh { max
k∈{1..K}

(wTXi ,k + b)}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

classification loss

+C ∗ ∣∣w ∣∣2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

regularisation term

(1)

Simplified version of MI-SVM [Andrews et al., 2003]
Can be seen as a neural network without hidden layer [Zhou and Zhang, 2002]
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Weakly Supervised Object Detection Weakly supervised detection by transfer learning

Our Model: MI-max

positive bag negative bag

positive instance

negative instance

Instance used during
training step
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Weakly Supervised Object Detection Weakly supervised detection by transfer learning

From MIL to WSOD

Use the objectness score si ,k of each Region of Interest.

Ls(w , b) =
N

∑
i=1

−yi
nyi

Tanh { max
k∈{1..K}

((si ,k + ε) (wTXi ,k + b))} +C ∗ ∣∣w ∣∣2

(2)
With ε ≥ 0.

We do r restarts, and select the best couple (w⋆, b⋆).
Test time score for a region x:

S(x) = Tanh{(s(x) + ε) (w⋆T x + b⋆)} (3)
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Weakly Supervised Object Detection Weakly supervised detection by transfer learning

Polyhedral MI-max model

Learn r hyperplanes in parallel:

fw =
N

∑
i=1

−yi
nyi

Tanh { max
k∈{1..K}

(si ,k + ε) max
j ∈{1...r}

((W T
j Xi ,k + bj ))} (4)

Polyhedral separability
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Weakly Supervised Object Detection Experiments

Detection evaluation on Artistic Datasets

Watercolor2k Comic2k Clipart1k

[Inoue et al., 2018]

PeopleArt CASPA paintings IconArt

[Westlake et al., 2016] [Thomas and Kovashka, 2018] [Our]

Figure: Example images from the 6 art datasets used for evaluating the weakly
supervised object detection.
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Weakly Supervised Object Detection Experiments

Detection evaluation on Artistic Datasets II

Table: Detection Mean Average Precision (%) with an IoU ≥ 0.5. Comparison on six art
datasets of the proposed MI-max and Polyhedral MI-max methods to alternative
approaches. The semi-supervised method is highlighted in green. The best weakly
supervised method compared to others is highlighted in red.

Network Method Model People-Art Watercolor2k Clipart1k Comic2k
CASPA

IconArt
paintings

SSD Semi-supervised with DA DT+PL ● 54.3⋆ 46.0⋆ 54.3⋆ ● ●

VGG16-IM
Weakly

supervised
fine-tuning

WSDDN ● 12.7 4.4 12.7 ● ●
SPN 10.0 7.1 3.8 1.2 0.7 7.7
PCL 3.4 0.0 1.2 0.0 0.0 5.9

RES-
152-

COCO

Off-the-shelf
Features

extraction

MAX 25.9 34.3 16.9 11.9 9.8 3.7
MAXA [Our] 48.9 43.9 22.0 19.8 14.6 12.0

MI-SVM 13.3 21.8 19.3 13.0 2.5 4.0
mi-SVM 5.6 5.3 6.2 4.6 1.2 2.8

MI-max [Our] 55.5 ± 1.0 49.5 ± 0.9 38.4 ± 0.8 27.0 ± 0.8 16.2 ± 0.4 12.0 ± 0.9
Polyhedral MI-max [Our] 58.3 ± 1.2 46.6 ± 1.3 30.5 ± 2.3 23.3 ± 1.6 14.4 ± 0.7 13.0 ± 2.2
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Weakly Supervised Object Detection Experiments

Successful detections on CASPA paintings

Bear Bird Cat Cow

Dog Elephant Bird Horse Sheep

Figure: Successful examples of animal detection using Polyhedral MI-max on CASPA
paintings test set (there is no “person” class in the training set). We only show boxes
whose scores are over 0.75, except for the elephant image.
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Weakly Supervised Object Detection Experiments

Successful detections on IconArt dataset

Jesus Child Mary Saint Sebastian Crucifixion

Figure: Successful examples of detection of iconographic characters using Polyhedral
MI-max on IconArt test set. We only show boxes whose scores are over 0.75.

N. Gonthier (Télécom Paris) PhD Defense 31/03/21 29 / 91



Weakly Supervised Object Detection Experiments

Failure examples I

Discriminative elements
Without score

With score

Saint Sebastian Nudity
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Weakly Supervised Object Detection Experiments

Failure examples II

Group of objects
Nudity

Missing mode
Angel score: -0.573

Confusing images
Jesus Child Nudity
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Weakly Supervised Object Detection Conclusion

Conclusion

Conclusion:

Good results on a difficult task

Fast solution

The learned classifier can be transferred between modalities

Future Work:

WSOD supervised by a classification network

Improve the diversity of the detectors in the polyhedral case

Using deep features learned on art dataset

Automatic analysis of the spatial composition of artworks
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Analyzing CNNs trained for Art classification tasks

Analyzing CNNs trained for Art classification tasks

1 Introduction
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Analyzing CNNs trained for Art classification tasks Motivation - Datasets - Methods

Motivation

Transfer Learning of Deep Learning model trained on natural images has
become a de facto method for art analysis applications:

Replica [Seguin, 2018] for visual similarity search

Oxford Painting Search [Crowley et al., 2018] for semantics recognition
of arbitrary objects

Style, artist or genre recognition
[Lecoutre et al., 2017, Strezoski and Worring, 2017, Cetinic et al., 2018,
Chen and Yang, 2019, Deng et al., 2020]

What are the effects of transfer learning for artistic images ?
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Analyzing CNNs trained for Art classification tasks Motivation - Datasets - Methods

Considered datasets

Name Task Number of classes NT % for test set

ImageNet [Russakovsky et al., 2015] Image Classification 1000 1.3M ∼ 10%

RASTA [Lecoutre et al., 2017] Style classification 25 80,000 20%
Paintings [Crowley and Zisserman, 2014] Object classification 10 8629 50%

IconArt Object classification 7 5955 50%
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ImageNet [Russakovsky et al., 2015] Image Classification 1000 1.3M ∼ 10%

RASTA [Lecoutre et al., 2017] Style classification 25 80,000 20%

Paintings [Crowley and Zisserman, 2014] Object classification 10 8629 50%
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Analyzing CNNs trained for Art classification tasks Motivation - Datasets - Methods

Considered datasets

Name Task Number of classes NT % for test set

ImageNet [Russakovsky et al., 2015] Image Classification 1000 1.3M ∼ 10%

RASTA [Lecoutre et al., 2017] Style classification 25 80,000 20%
Paintings [Crowley and Zisserman, 2014] Object classification 10 8629 50%

IconArt Object classification 7 5955 50%
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Analyzing CNNs trained for Art classification tasks Motivation - Datasets - Methods

Considered datasets

Name Task Number of classes NT % for test set

ImageNet [Russakovsky et al., 2015] Image Classification 1000 1.3M ∼ 10%

RASTA [Lecoutre et al., 2017] Style classification 25 80,000 20%
Paintings [Crowley and Zisserman, 2014] Object classification 10 8629 50%

IconArt Object classification 7 5955 50%

Crucifixion | Mary Saint Sebastian Mary |Jesus Child | Angel
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Analyzing CNNs trained for Art classification tasks Motivation - Datasets - Methods

Feature Visualization

Figure: One individual channel is highlighted in orange.

Feature Visualization by Optimization

Maximal Activation Images
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Analyzing CNNs trained for Art classification tasks Motivation - Datasets - Methods

Feature Visualization by Optimization

Synthesize an image by maximizing the channel activation:
“Optimized Image”

Figure: Feature Visualization by Optimization [Olah et al., 2017].
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Analyzing CNNs trained for Art classification tasks Motivation - Datasets - Methods

Feature Visualization by Optimization

Figure: Feature Visualization by Optimization [Olah et al., 2017].
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Analyzing CNNs trained for Art classification tasks Motivation - Datasets - Methods

Maximal Activation Images

We look at the images with the maximal activation for a particular channel.

. . .

Compute the class entropy and the overlapping ratio (before and after
fine-tuning)
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Analyzing CNNs trained for Art classification tasks Motivation - Datasets - Methods

Networks comparison

A feature similarity index named Centered Kernel Alignment (CKA)
[Cortes et al., 2012, Kornblith et al., 2019]: normalized sum of the squared
dot products (similarity) between features.

CKA =
∥XTY ∥2

F

∥XTX ∥F ∥Y TY ∥F
(5)
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Analyzing CNNs trained for Art classification tasks From Natural to Art Images

Performances of the different transfer methods

Method Top-1 Top-3 Top-5

Off-the-shelf Feature extraction with InceptionV1 pretrained on ImageNet 30.95 58.71 74.10

Fine-Tuning of InceptionV1 pretrained on ImageNet 55.18 82.25 91.06
InceptionV1 trained from scratch 45.29 73.44 84.67

Table: Top-k accuracies (%) on RASTA dataset [Lecoutre et al., 2017] for
different methods.

Similar results in [Cetinic et al., 2018, Sabatelli et al., 2018]
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Analyzing CNNs trained for Art classification tasks From Natural to Art Images

InceptionV1

N. Gonthier (Télécom Paris) PhD Defense 31/03/21 42 / 91



Analyzing CNNs trained for Art classification tasks From Natural to Art Images

Low-level layers are not modified.

Imagenet Pretrained RASTA Fine Tuned

Figure: Optimized Images for channel mixed3a 3x3 pre relu:12
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Analyzing CNNs trained for Art classification tasks From Natural to Art Images

Some detectors are already useful.

Imagenet Pretrained RASTA Fine Tuned

Figure: Optimized Images for channel mixed4b 3x3 bottleneck pre relu:35
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Analyzing CNNs trained for Art classification tasks From Natural to Art Images

Some detectors are already useful.

Imagenet Pretrained RASTA Fine Tuned

Figure: Maximal Activation Examples for channel
mixed4b 3x3 bottleneck pre relu:35
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Analyzing CNNs trained for Art classification tasks From Natural to Art Images

Mid-level layers are adapted to the new dataset.

Imagenet Pretrained RASTA Fine Tuned

Figure: Optimized Images for channel mixed4c 3x3 bottleneck pre relu:78
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Analyzing CNNs trained for Art classification tasks From Natural to Art Images

Mid-level layers are adapted to the new dataset.

Imagenet Pretrained RASTA Fine Tuned

Figure: Maximal Activation Examples for channel mixed4c 3x3
bottleneck pre relu:78
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Analyzing CNNs trained for Art classification tasks From Natural to Art Images

Mid-level layers are adapted to the new dataset.

Imagenet Pretrained RASTA Fine Tuned

Figure: Optimized Images for channel mixed4d 3x3 pre relu:52
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Analyzing CNNs trained for Art classification tasks From Natural to Art Images

Mid-level layers are adapted to the new dataset.

Imagenet Pretrained RASTA Fine Tuned

Figure: Maximal Activation Examples for channel
mixed4d pool reduce pre relu:63
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Analyzing CNNs trained for Art classification tasks From Natural to Art Images

The learned features have a high variability.

Mode A Mode B Mode C Mode D Mode E

Fine-tuning 1 18% Fine-tuning 1 34% Fine-tuning 1 22% Fine-tuning 1 10% Fine-tuning 1 2%

Fine-tuning 2 24% Fine-tuning 2 42% Fine-tuning 2 8% Fine-tuning 2 13% Fine-tuning 2 3%

Figure: Same channel with different training (mixed4d 3x3 pre relu:52), the
overlapping ratio is displayed in %. Each mode corresponds to a different set of
hyperparameters.
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Analyzing CNNs trained for Art classification tasks From Natural to Art Images

High-level layers cluster images of the same class.

Imagenet Pretrained RASTA Fine Tuned

Figure: Optimized Images for channel mixed5b pool reduce pre relu:92.
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Analyzing CNNs trained for Art classification tasks From Natural to Art Images

High-level layers cluster images of the same class.

Imagenet Pretrained

Realism 17%
Post-Impressionism 10%

Neoclassicism 10%

RASTA Fine Tuned

Ukiyo-e 82 %
Northern Renaissance 14 %

Early Renaissance 3 %

Figure: Maximal Activation Examples for channel
mixed5b pool reduce pre relu:92 with the Top 100 composition.
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Analyzing CNNs trained for Art classification tasks Training from scratch

The feature visualization is less interpretable with a
training from scratch.

Optimized Image Maximal Activation Examples

Top 100 Composition: Magic Realism 78% |Ukiyo-e 22%

Figure: Optimized Image and Maximal Activation Examples for channel
mixed4:16 for a model trained from scratch.

N. Gonthier (Télécom Paris) PhD Defense 31/03/21 53 / 91



Analyzing CNNs trained for Art classification tasks Quantitative evaluation of the networks modification

Changes in the fine-tuned model.
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(a) ImageNet Pretraining.
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(b) Fine Tuned.

Figure: Boxplots of Entropy over classes on the top 100 maximal activation images for
the model fine-tuned on RASTA. For each box, the horizontal line corresponds to the
average result and the star to the median.
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Analyzing CNNs trained for Art classification tasks Quantitative evaluation of the networks modification

Feature Similarity between networks.
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Figure: CKA (defined in eq. 5) computed on RASTA test set for different models
trained or fine-tuned on RASTA train set.
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Analyzing CNNs trained for Art classification tasks From One Art dataset to another

From One Art dataset to another.

Table: Mean Average Precision on:
- Paintings [Crowley and Zisserman, 2014]

- IconArt

Method Paintings IconArt

Fine-Tuning of InceptionV1 pretrained on ImageNet 0.65 0.59
Fine-Tuning of InceptionV1 pretrained on ImageNet and RASTA 0.66 0.67

Similar results in [Sabatelli et al., 2018]

Table: Mean CKA between the model pretained on ImageNet and the one
fine-tuned on Paintings [Crowley and Zisserman, 2014] or IconArt.

mean CKA of a pair of nets Paintings IconArt

Pretrained on ImageNet & FT on small art dataset 0.91 0.90
Pretrained on ImageNet & FT on RASTA + FT on small dataset 0.76 0.73
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Analyzing CNNs trained for Art classification tasks From One Art dataset to another

Some detectors may be adapted to the IconArt dataset.

Imagenet
Pretrained IconArt Fine Tuned RASTA Fine Tuned

RASTA and
IconArt Fine Tuned

Figure: Optimized Images for channel mixed4c 3x3 bottleneck pre relu:78.
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Analyzing CNNs trained for Art classification tasks Conclusion

Conclusion

Conclusion:

Fine Tuning an ImageNet pretrained model provides better results
then other transfer methods

Pretraining on ImageNet plus Artistic dataset may help for art
analysis application

Feature Visualization helps to understand what happens during
fine-tuning

Future work:

Use other architectures

Use models pre-trained on different large scale natural images dataset

Work on larger art datasets
[Wilber et al., 2017, Strezoski and Worning, 2018]
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Texture Synthesis with CNNs Motivation

Texture Synthesis

Definition: Given a reference texture, texture synthesis aims at producing
more texture images which are “visually similar” to the reference.

Figure: Examplar of a reference texture with ideal synthesis.
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Texture Synthesis with CNNs Motivation

Texture Synthesis with CNNs [Gatys et al., 2015b]

Statistics-based methods.

Reference Image [Heeger and Bergen, 1995] [Portilla and Simoncelli, 2000] [Gatys et al., 2015b]
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Texture Synthesis with CNNs Motivation

Motivation

Limitations of [Gatys et al., 2015b]:

Large scale regularity especially in high resolution image

Reference [Gatys et al., 2015b]
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Texture Synthesis with CNNs Motivation

Texture Model

Texture features: Given an exemplar texture I ∈ RN , we compute the ml

feature maps f lp ∈ Rhl×wl of the l -th layer of a VGG19 pretrained on
ImageNet

Figure: Illustration of a single l layer in a CNN.
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Texture Synthesis with CNNs Motivation

Texture Model

We are looking for Ĩ which minimizes the following cost function:

L(I , Ĩ ) =
L

∑
l=1

ωl∥G l − G̃ l∥2F (6)

with G l the correlation matrix (i.e. Gram matrix) of the ml feature maps
of the layer l : G l

p,q = 1
N 2

l
⟨f lp ∣f lq ⟩ [Gatys et al., 2015b]

The synthesis is computed by gradient descent by back-propagation
through the CNN.

with p, q denote
the index of fea-
ture map corre-
sponding to the fil-
ter.
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Texture Synthesis with CNNs Motivation

Improvements of the method

Speed Up the synthesis:

Feed forward generators

[Ulyanov et al., 2016, Ulyanov et al., 2017, Risser, 2020]

GAN [Jetchev et al., 2016, Darzi et al., 2020]

Add a corrective term to the loss function:

L = LGram + βLcorrective

Spectrum constraints [Liu et al., 2016]

Shift correlation [Berger and Memisevic, 2017]

Multiple constraints (total variation, autocorrelation, extended
correlation) [Sendik and Cohen-Or, 2017]

Histogram matching [Risser et al., 2017, Heitz et al., 2020, Risser, 2020]

High resolution images

Gaussian Pyramid [Snelgrove, 2017]
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Texture Synthesis with CNNs Multi-resolution strategy with long range control

Multi-resolution strategy

Figure: Illustration of synthesis results at K different scales, named MRInit.

Classical idea presented in e.g.
[Kwatra et al., 2005, Risser et al., 2017, Galerne et al., 2018, Risser, 2020].
Alternative multi-resolution framework:
[Heeger and Bergen, 1995, Portilla and Simoncelli, 2000, Snelgrove, 2017].
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Texture Synthesis with CNNs Multi-resolution strategy with long range control

Spectrum Transferring [Liu et al., 2016]

We impose the spectrum (modulus of the Fourier transform) of I to Ĩ by
adding this term to the loss function:

Lspe =
1

2N
∥∣F(Ĩ )∣ − ∣F(I )∣∥2, (7)

Used by [Galerne et al., 2011, Tartavel et al., 2015].
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Texture Synthesis with CNNs Multi-resolution strategy with long range control

Autocorrelation of the feature maps

We replace the Gram Matrix by the autocorrelation of each of the feature
map p. We impose the squared modulus of the Fourier Transform
(equivalent to the autocorrelation):

Al
p =

1

N 2
l

∣ F(f lp) ∣2 (8)

Idea inspired by [Portilla and Simoncelli, 2000]
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Texture Synthesis with CNNs Results

Parameters Setup

For the experiments, all the images are of size 1024 Ö 1024.
We will compare different methods:

[Gatys et al., 2015b]

Multi-resolution strategy of [Snelgrove, 2017]

Gram with our multi-resolution strategy (MRInit)

Gram + Spectrum Image [Liu et al., 2016] with our multi-resolution
strategy

Autocorrelation with our multi-resolution strategy

With K = 2 for our method and K = 3 for [Snelgrove, 2017].
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Texture Synthesis with CNNs Results

Reference [Gatys et al., 2015b] [Snelgrove, 2017]

Gram + MRInit [Our] Gram + Spectrum + MRInit [Our] Autocorr + MRInit [Our]
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Reference [Gatys et al., 2015b] [Snelgrove, 2017]
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[Snelgrove, 2017] Gram + MRInit [Our]
Gram + Spectrum + MRInit
[Our] Autocorr + MRInit [Our]

N. Gonthier (Télécom Paris) PhD Defense 31/03/21 73 / 91



Texture Synthesis with CNNs Results

[Snelgrove, 2017] Gram + MRInit [Our]
Gram + Spectrum + MRInit
[Our] Autocorr + MRInit [Our]
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Texture Synthesis with CNNs Results

Perceptual Test
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Texture Synthesis with CNNs Results

Perceptual Test Results

General performance:

Global scale for regular textures:
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Texture Synthesis with CNNs Results

Perceptual Test Results

General performance: Global scale for regular textures:
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Texture Synthesis with CNNs Conclusion

Conclusion

We propose a simple way to synthesise high definition images based
on [Gatys et al., 2015b]

The results are improved with new designs of the loss function

Future Work:

Using CNN trained with a multi-resolution strategy
[van Noord and Postma, 2017]

Looking for the minimal set of parameters needed

Design of an adaptive loss function
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Conclusion

Conclusion

Contributions

Illustration of the use of deep features for art analysis and texture
synthesis

Fast and effective multiple instance model for weakly supervised
objects detection

Better understanding of fine-tuning for art application

Model for Long-range organization preservation in texture synthesis

Publications: 1 ECCV workshop, 1 ICPR workshop, 1 DHNord, 2
journals under review
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Conclusion

Thank you for your attention.
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N. Gonthier (Télécom Paris) PhD Defense 31/03/21 89 / 91



Conclusion

References X

▸ [Wilber et al., 2017] Wilber, M. J., Fang, C., Jin, H., Hertzmann, A., Collomosse, J., and Belongie, S. (2017).
BAM! The Behance Artistic Media Dataset for Recognition Beyond Photography.
In IEEE International Conference on Computer Vision (ICCV), pages 1211–1220.

▸ [Zhou and Zhang, 2002] Zhou, Z.-H. and Zhang, M.-L. (2002).
Neural Networks for Multi-Instance Learning.
In Proceedings of the International Conference on Intelligent Information Technology, pages 455–459, Beijing, China.

▸ [Zhu et al., 2017] Zhu, Y., Zhou, Y., Ye, Q., Qiu, Q., and Jiao, J. (2017).
Soft Proposal Networks for Weakly Supervised Object Localization.
In 2017 IEEE International Conference on Computer Vision (ICCV), pages 1859–1868.
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