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Abstract
The field of texture synthesis has witnessed important progresses over the last years, most notably through the use of
convolutional neural networks. However, neural synthesis methods still struggle to reproduce large-scale structures, especially
with high-resolution textures. To address this issue, we first introduce a simple multi-resolution framework that efficiently
accounts for long-range dependency. Then, we show that additional statistical constraints further improve the reproduction
of textures with strong regularity. This can be achieved by constraining both the Gram matrices of a neural network and the
power spectrum of the image. Alternatively, one may constrain only the autocorrelation of the features of the network and
drop the Gram matrices constraints. In an experimental part, the proposed methods are then extensively tested and compared
to alternative approaches, both in an unsupervised way and through a user study. Experiments show the advantage of the
multi-scale scheme for high-resolution textures and the advantage of combining it with additional constraints for regular
textures.
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1 Introduction

Exemplar-based texture synthesis consists in automatically
generating sample images from a given example texture
image. These samples are required to be visually faithful to
the example and as diverse as possible. For more than forty
years, and despite its inherent ill-posedness, this problemhas
been instrumental in the development of mathematical mod-
els for images. In particular, it has enabled one to investigate,
throughvisual experiments, the validity of variousmathemat-
ical models, ranging from time series [27], Markov random
fields [4] to wavelet decompositions [18,29] or nonparamet-
ric Markovian modeling [11]. More recently, convolutional
neural networks have permitted impressive progresses in the
field, initiated by thework byGatys et al. [13], itself followed
by numerous contributions, e.g., [25,36,38].

One challenge that has been faced by all methods since
the early days of texture synthesis is the multi-scale nature
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of texture samples, implying that models should be able to
reproduce both small and large scales, possibly over sev-
eral orders of magnitude. For instance, parametric models
for Markov fields are known to be intrinsically badly suited
to a multi-scale modeling. Zooming such a model by a
given factor implies extremely heavy computations to derive
the corresponding parameters [16], impairing the design of
multi-scale such models. Wavelet models are more adapted
by nature to multi-scale modeling, but the faithful repro-
duction of structured textures requires complex interactions
between scales to be accounted for. The best such model-
ing up to date is the second order statistical model proposed
in [29], but highly structured textures still represent a chal-
lenge to such approaches. Nonparametric Markov modeling
methods such as those presented in [11] or [10] indeed have
the ability to deal simultaneously with several scales, albeit
at a high computational cost. However, they are also well
known to produce textures with very little variety, often pro-
ducing verbatim copies, see [1] and the experiments in the
present paper. The methods relying on convolutional neural
networks, following the seminal work by Gatys et al. [13],
are currently the most efficient to capture multi-scale struc-
tures.Nevertheless, they still lack efficiencywhen large-scale
regularity is needed, as we will see in detail in this paper.
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Moreover, they are prone to generate artifacts that prevent a
satisfactory reproduction of small scale structures.

In this work, we present several neural synthesis meth-
ods that significantly improve the ability to preserve the
large-scale organization of textures. We first propose a
simple multi-resolution framework that account for large-
scale structures and permits the synthesis of high-resolution
images. We then show that, in this multi-resolution frame-
work, additional constraints are useful in the case of regular
textures. A first approach combines the classical statisti-
cal constraints of neural approaches [13] (Gram matrices)
with Fourier frequency constraints, similar to those intro-
duced by [12]. A preliminary, mono-scale version of this
idea was presented in a conference paper [25]. Alternatively,
the multi-resolution framework can be combined with a sta-
tistical constraint relying on the full auto-correlation of the
features of the network. This approach is closely related to
the one introduced in [33], which combines correlations with
Gram matrices and various additional constraints. We show
that correlation terms alone yield excellent results and there-
fore that Gram matrices are not necessary in this case.

We then evaluate the proposed methods in an extensive
experimental section. The evaluation of texture synthesis
results is a challenging task. Some approaches draw on well-
chosen statistics to estimate the quality of the results (the
closer to the exemplar, the better), as for instance discussed
in [3]. In this paper, we first evaluate results in this manner,
relying on Kullback–Leibler divergence between wavelet
marginals, following the texture indexing scheme from [7].
Then, we also evaluate the proposed methodology through a
perceptual user study. Indeed, it is shown in [3,8,9] through
extensive experiments that feature-based evaluations do not
approachwell human-based visual evaluation of texture simi-
larity, especially in the case of long-range correlations, which
is precisely one of the cases tackled in this paper. We there-
fore rely on a user study to compare our framework to both
the original method from [14] and some of its improvement
that focus on the respect of large-scale structures [33,36].

2 Neural Texture Synthesis

Acomplete state-of-the-art on the subject of texture synthesis
is out of the scope of this paper. In view of themethod that we
propose in this work, we focus in this section on the works
involving CNNs that have followed the seminal contribution
of Gatys et al. [13] and particularly on works proposing new
statistical constraints and focusing on long-range structure.

2.1 Accelerations and Alternative Sampling Strategy

In a first direction, several works have proposed ways to
speed up the synthesis process, notably through feed-forward

networks [20,34,38,39]. In [19], generative adversarial
networks (GANs) are used to synthesize textures. Suchmeth-
ods enable fast synthesis once the networks have been trained
for specific textures, but the quality of results is still inferior
to the original approach [13], especially for structured tex-
tures. Zhu and other authors have proposed an evolution of
the FRAME model [44] in the context of neural networks
[26] under the name DeepFrame. Textures are synthesized
from an exponential model using features from a neural net-
work. In [6], this macrocanonical approach is pushed further
and fully analyzed theoretically. It is worth noting that both
approaches [6,26] rely on first-order constraints on features
and therefore drop the use of the Gram matrices.

2.2 Statistical Constraints and Losses

In a different direction, a large body of works have been ded-
icated to add additional constraints to the synthesis, often
relying on new or modified loss functions. In [15], the color
of the synthesis is constrained to specified values. In [31], it is
proposed to constrain the histogramsof some featuremaps, in
order to reduce halo artifacts. In [20], a total variation term is
added in the loss function for perceptual reasons.Otherworks
such as [2,25,33] also proposed alternative losses to add fur-
ther statistical constraints. Since they explicitly deal with
long-range dependency and structure, they will be reviewed
in the next paragraph. It should be noted that these approaches
propose to combine several statistical constraints by adding
them to get the final loss function. Another possibility would
be to alternate different projections as it is done in the seminal
work of Portilla and Simoncelli [29]. Alternative constraints
have also been investigated for the closely related task of style
transfer. In [24], it is shown that matching Gram matrices
reduces to kernel-based comparison of features, and various
kernels are investigated in this setting. Other works inves-
tigate alternatives to the original Gram matrices, such as
cross-layers (rather than within-layers) Gram matrices as in
[42] or [28] (both inspired by [29]). In [5], it is proposed
to consider the image co-occurrences matrices, in a GAN
framework, in order to capture local texture patterns. A term
based on co-occurrence matrices is added to the loss function
and a collection of co-occurrencematrices from the reference
is added to the input of both the generator and the discrimi-
nator networks.

2.3 Multi-scale Neural Synthesis

Neural networks such as the VGG19 used in most texture
synthesis methods intrinsically have a multi-scale structure
by alternating convolutions, nonlinearity and subsampling.
However, as we will see in the experimental section, the
size of the receptive fields in these networks is not suffi-
cient to synthesize large-scale structures, especiallywhen the
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resolution increases. To the best of our knowledge, only
one paper, [36], proposes to rely on a multi-scale strategy
to synthesize high-resolution textures. The idea is to feed
the network with a multi-scale decomposition, in this case a
Gaussian pyramid, instead of a single image. In this paper
we will propose an alternative approach to the multi-scale
neural synthesis, where scales are considered one at a time,
and compare our results with [36].

2.4 Incorporating Long-Distance Dependency

In [2], long-distance patterns are handled by adding in the
loss function a cross-correlation term, made of the corre-
lation between features maps and a shifted version of it.
Different shifts over a few pixels are used depending on
the layer, up to about a sixth of the image size. In [28], in the
context of style transfer, a similar idea is investigated using
only one-pixel shifts. In [33], the same idea is pushed fur-
ther, by considering all cross-correlations at once in order
to impose long-range structure for regular textures. Several
other terms (smoothness, diversity) are added to the loss func-
tion. This approach, to which we will compare our results,
indeed yields long-range structure, nevertheless at the price
of relatively strong artifacts. Apart from these work deal-
ing with cross-correlation of features and closely related to
the present paper, [25] proposed to incorporate the power
spectrum in the loss function, thereby enabling the respect
of highly structured textures. In a related work, [32], it is
proposed to impose the spectrum constraint by using a win-
dowed Fourier transform, enabling non-stationary behavior
to be accounted for, at the cost of the inherent stationary
nature of textures.

3 Multi-scale Spectral Control for Texture
Synthesis

In this section, we detail our method to synthesize high-
quality texture images. After recalling in Sect. 3.1, the
classical approach from Gatys et al. [13], we introduce a
simple multi-scale framework in Sect. 3.2, before presenting
in Sect. 3.3 the spectral constraint we propose in order to both
control artifacts and preserve long-range structures. Finally,
we present in Sect. 3.4, the use of the autocorrelation of the
feature maps as a potential alternative to the Gram matrices.

3.1 Reminder on theWork from [13]

The seminal work [13] is based on the idea that a net-
work trained for classification purpose, in this case a VGG
network as introduced in [35], can be repurposed for a syn-
thesis task. Roughly speaking, the synthesis is achieved by
backpropagation of texture-adapted statistical constraints

from the inner layers of the network up to pixels of the syn-
thesized image.

More precisely, themethodworks as follows.We consider
a given convolutional neural network 1 consisting of l lay-
ers. For a given color texture exemplar I ∈ R

h×w×3, where
h, w are the dimensions of the image, we write f l for the
output (the activations) of layer l. This output will be called
a feature map from now on. Each feature map f l belongs to
R
hl×wl×ml , where wl , hl are the spatial dimension of layer

l and ml the number of channels of the feature. We further
write N = h×w and Nl = hl×wl for the spatial dimensions
of respectively the image and the feature maps.

To synthesize a new texture, some statistics are imposed
on a subset2 S of the layers of the CNN. The statistics con-
sidered in [14] are strongly inspired by thework fromPortilla
and Simoncelli [29] and rely on the so-called Gram matrices
Gl ∈ R

ml×ml , defined for each couple p, q ∈ {1, · · · ,ml}
as

Gl
p,q = 1

N 2
l

Nl∑

i=1

f lp(i) · f lq(i) = 1

N 2
l

〈 f lq , f lp〉, (3.1)

where f lp ∈ R
Nl , for p ∈ {1, . . . ,ml}, is the vectorized pth

channel of feature l.
To generate a new texture image Ĩ on the basis of a ref-

erence one I , a gradient descent is used, starting from a
white noise image, to find an image that matches the ref-
erence statistics. Usually the L-BFGS-B [43] second-order
optimization method is chosen.

The corresponding loss function on the features is defined
as :

LGram =
L∑

l=1

ωl‖Gl − G̃l‖22, (3.2)

with ωl ∈ R being the weight of the layer l.
The loss function Eq. 3.2 can be seen as multi-objective

cost functions agglomerated into a single-objective cost func-
tion. Although comparing different objectives is generally
difficult, choosing identical weights, i.e.,ωl = 1 ∀l ∈ [1, L],
yields perceptually acceptable results.

A central question of texture synthesis is to identify the
best sets of statistics to incorporate in this loss function
and possibly the irreducible set of those statistics ( [21]).
Although the method from [13] yields synthesis results of
unprecedented quality, a strong limitation is its inability to

1 In this work, as in [13], we consider the VGG19 network [35] but
other choices are possible, including networks with random weights
[17].
2 For simplicity’s sake, we will consider layers from 1 to L in the rest
of this document but the user can choose non-consecutive layers in the
network.
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respect long-rangedependency, particularlywhen large-scale
structures have some regularity. This can be seen in first row
of Fig. 2. Neural networks such as VGG-19 have amultiscale
structure, through alternating convolution and subsampling,
that allow some large-scale structures to be accounted for.
Nevertheless, the size of the filters used in CNNs such as
VGG-19, and therefore the size of the corresponding recep-
tive fields, is small with respect to the size of the image
especially when synthesizing high-resolution images (here
1024 × 1024). As we have mentioned in the introduction,
several works have addressed this limitation [2,25,28,32,33],
but, as we will see in the experimental section, none is fully
satisfactory. In the following sections, we propose several
improvement of the original neural texture synthesis method
in order to address this limitation.

3.2 Multi-scale Synthesis

The first modification we introduce to the method from [13]
is a straightforwardmulti-scale framework that will help pre-
serve the large-scale organization of images. This strategy is
relatively classical for texture synthesismethods andhas been
used in the past in different settings [23,37]. This approach
is much simpler than the related method introduced in [36]
and, as we will see in the experimental section, yields better
results.

The idea is simply to first synthesize a coarse resolution
image, which is then upsampled and given as initialization

for a synthesis at the next scale. This process is repeated
K times until the desired resolution is reached. As illus-
trated in Fig. 1, we first build an image pyramid from the
exemplar image I , iteratively down-sampling it by factors
21, 22, . . . , 2K , resulting in images I (1), I (2), . . . , I (K ). A
first synthesis result is obtained by using the smallest image
as the exemplar and white noise as initialization. Then, for
step k ∈ K , K − 1, . . . , 1, we generate a new result using
I (k) as the exemplar and the obtained synthesis result Ĩ (k−1)

as the initialization instead of white noise. The upsampling
of Ĩ (k−1) is performed using bilinear interpolation. The only
parameter of this generic multi-scale framework is the num-
ber of scales K .

As can be seen in Fig. 18, this strategy can yield strong
improvements in some cases but is not enough to allow the
reproduction of highly structured textures. In the next section,
we show how the result can be improved by adding a careful
control of the Fourier spectrum into the multi-scale scheme.

3.3 Spectrum Constraint

We propose to include in the synthesis a new constraint
based on the Fourier spectrum of the image. It is known that
such a constraint alone is an efficient way to reproduce the
so-called micro-textures [12] made of uniformly distributed
small details. This constraint has also been used in combina-
tion with more structured synthesis methods in [37].

Fig. 1 Multiscale strategy. The exemplar is downsampled by factors
2−1, 2−2, . . . , 2−k to build a pyramid I (1), I (2), . . . , I (k). At scale K , a
new texture is synthesized by using I (k) as the exemplar and the upsam-

pled result of the synthesis at scale K − 1 as initialization (instead of
white noise). We repeat this step until we reach the top of the image
pyramid
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Let uswriteF (I ) for the discrete Fourier transform (DFT)
of an image I ,F−1 for the inverse DFT and |.| for the com-
plex modulus. The idea is to constrain the synthesized image
Ĩ to have a Fourier spectrum |F ( Ĩ )| as similar as possible
to |F (I )|, the spectrum of I . A simple way to do this is to
first perform themulti-scale neural synthesis described above
and then to replace the phases of the Fourier transform of the
synthesized image with random phases, before applying the
inverse Fourier transform to the result [12]. Now, this sequen-
tial strategy is not satisfactory, since the randomization of
phases would destroy the effect of both the statistical con-
straints on the VGG features and the effect of the multi-scale
strategy. Therefore, we propose to incorporate the Fourier
constraint into the multi-scale synthesis process. A prelimi-
nary, mono-scale version of this idea was presented in [25].

In order to include the Fourier constraint into the loss
function used for synthesizing images, we first introduce EI ,
the set of images having the same spectrum as I the exemplar
image. In the case of color images, this is defined as

EI =
{
J ∈ R

h×w×3|∃φ ∈ R
h×w : F (J ) = eiφF (I )

}
.

Next, we define the Fourier loss associated to the image Ĩ
as the normalized Euclidean distance between Ĩ and EI ,

Lspe = 1

2N
d( Ĩ ,EI )

2 = 1

2N
‖ Ĩ − P( Ĩ )‖2, (3.3)

and the total loss as

L = LGram + βLspe, (3.4)

where β is a weighting parameter. Since the Fourier loss is
the distance to EI , its gradient is given by

�spe = N−1( Ĩ − P( Ĩ )),

whereP is the projection operator on EI . This projection is
given by (see [37], Appendix A)

P( Ĩc) = F−1

(
F ( Ĩ ) · F (I )

|F ( Ĩ ) · F (I )| · F (Ic)

)
, c ∈ {r , g, b}

(3.5)

where · is the scalar product in C
3, that is

F ( Ĩ ) · F (I ) =
∑

c=r ,g,b

F ( Ĩc)F (Ic)
∗,

Ic, for c = r , g, b, being the color channels of I and a∗ the
conjugate of complex number a. This spectrum constraint
can be seen as a regularization to the ill-posed example-based
synthesis problem.

3.4 Autocorrelation of the Feature Maps

In this section, we consider an alternative way to impose
long-range consistency, based on the autocorrelation of the
features maps. This is motivated by the fact that the autocor-
relation is a proxy of repeating patterns, such as the presence
of periodic elements in the signal.As explained in Sect. 2, this
idea has been explored with different modality in [2,28,33].

The autocorrelation function of an image is defined as the
convolution of the image with itself. Let I ∈ R

h×w, the auto-
correlation C(I ) =∈ R

h×w is defined, for ∀k ∈ {1, . . . , h}
and ∀l ∈ {1, . . . , w}, as

C(I )(k, l) = 1

N 2

h∑

i=1

w∑

j=1

I (i, j)I (| i + k |h, | j + l |w)

(3.6)

= 1

N 2 I ∗ I (3.7)

| • |h being the modulo operation with divisor h.
And efficient way to compute the autocorrelation is to

use the discrete Fourier transform (DFT). According to the
Wiener–Khintchin theorem, we have:

C(I ) = F−1(| F (I ) |2).

Then, we define the autocorrelation constraint at the layer l
as Al ∈ R

hl×wl×ml the tensor of the squared modulus of the
Fourier transform of the features maps, i.e.,

Al
p = 1

N 2
l

| F ( f lp) |2 (3.8)

with p ∈ {1, . . . ,ml} being the corresponding indexes of the
feature map p. Using this toric representation allows one to
consider all possible shifts between pixels.

This constraint is similar to the one in [33], except that it
is dealt with in the Fourier domain and there is no weighting
of the elements of the autocorrelation matrix.

4 Experiments

In this section, we perform experiments to illustrate both the
multi-scale framework and the additional constraints we pro-
pose for neural texture synthesis.After briefly introducing the
methods we compare ourselves to, we first show some visual
results. Then,we propose amethod to evaluate the innovation
capacity of algorithms, and more precisely their tendency
to produce verbatim copy of the input. Further, we evaluate
themethods quantitatively using the Kullback–Leibler diver-
gence between wavelet statistics. Despite the interest of such
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quantitative evaluations, it is known that theyhave severe lim-
itations, in particular to evaluate results at large scales [9].
Therefore, we have also conducted a medium scale percep-
tual evaluation from human observers, the results of which
we analyze in Sect. 4.3.3. These different evaluations have
been conducted on the 20 texture images visible in Fig. 8.
These high-resolution (1024×1024) textures have been cho-
sen to include both structured and irregular textures. Some of
them display strong long-range dependency. All results can
be found in Supplementary Materials. Eventually, we study
the effects of various parameters and briefly illustrate the
ability of our method to produce higher resolution textures.

4.1 Architecture and Parameters

We use a VGG-19 network pre-trained on ImageNet with
rescaled weights3 as in [13] and we also use the same lay-
ers, i.e., “Conv1_1,” “Pooling1,” “Pooling2,” “Pooling3”
and “Pooling4.” The corresponding weights4 are set to be
w1 = w2 = w3 = w4 = w5 = 109. When the spec-
trum constraint is considered, we use a weighting parameter
β = 105 unless otherwise specified. Synthesis are performed
using 2000 iterations. We use TensorFlow as a deep learning
framework and Scipy as an optimization package.

4.2 Other Texture Synthesis Methods

The first method we compare ourselves to is the original syn-
thesismethod fromGatys et al. [13] that from nowwe refer to
as “Gatys”. We also consider the method “Deep Corr”, intro-
duced in [33], using the code from the authors.5 We also
consider the multi-scale texture algorithm from [36], using
the code from the author,6 using layers 3 and 8 and 5 octaves
in the Gaussian pyramid as in the original paper. We use a
maximum of 2000 iterations for all the CNN-based methods.
From now on, we refer to this method as “Snelgrove”. Those
last two methods have been chosen because they explicitly
address the problem of reproducing large-scale structures.
We also consider the feed-forward approach proposed in [38]
using a PyTorch implementation by Jorge Gutierrez.7 We
refer to this method as “Ulyanov”. Finally, we consider two
patch-based methods, from the works [10,11], using imple-
mentations from the online journal IPOL [1,30], with default

3 The rescaled VGG-19 network can be found at http://github.com/
leongatys/DeepTextures.
4 Due to the numerical sensitivity of the LBFGS-B optimization algo-
rithm.
5 The code of [33] can be found on Github : https://github.com/
omrysendik/DCor.
6 The code of [36] https://github.com/wxs/subjective-functions.
7 https://github.com/JorgeGtz/TextureNets_implementation.

parameters settings. We refer to these two methods, respec-
tively, as “Efros Leung” and “Efros Freeman”.

Rough execution times of the different methods are as
follows. We emphasize that codes are not optimized and
that these times are given to fix ideas. For our method
“Gram+MSInit,” synthesizing one texture of size 1024 ×
1024 takes about 60 min8 with a GeForce 1080 Ti . This
is about twice the execution time needed by the original
approach from Gatys et al. [13] (30 min) at the same scale.
The “Snelgrove” method [36] takes about 40 min with the
same output scale. On the other hand, “Deep Corr” [33] takes
roughly a day on a similar GPU9 and “Ulyanov” [38] needs
about 6h to train a network per texture, the inference being
then almost instantaneous. In comparison, the patch-based
methods [10,11] are the fastest and only take about a minute.

4.3 Comparisons

In Figs. 2, 3, 4 and 5 we display synthesis results using our
methods and those presented in the previous paragraph. For
space reason,we only consider 4 textures, all exhibiting some
kind of long-range dependency. Their resolution is 1024 ×
1024. Some details can be seen in Fig. 6. All results can be
seen in Supplementary Materials (Sect. 2).

We first notice that patch-based methods are very faith-
ful to the reference image. However, they have the tendency
to produce regions that are exact copy of the input, a ver-
batim effect already noticed in [1] and investigated in the
next section. They also at times yield images with constant
or repetitive patterns.

Among neural methods, the original “Gatys” method is
still competitive, but struggles to reproduce large scales on
these high-resolution textures. This is due to the size of the
receptive fields, which is clearly not sufficient in this case.
The method from “Ulyanov” is worse in this respect. The
method “DeepCorr” improves the preservation of large-scale
structures, but results are not satisfying, some structures are
lacking, and artifacts are visible. In contrast, the plain use of
the auto-correlation term as an additional constraint, as we
propose in “Autocorr,” yields better results, even though no
use of the Gram matrices is made. The regularization and
innovation terms present in the method from [33] may also
be harmful in these cases. Next, we observe that adding the
Fourier spectrum constraint alone (at a single scale) yields
interesting results, but is not enough to get fully satisfying
results. Themulti-scalemethods, be it “Snelgrove” or the one
we propose, “Gram+MSInit”, “Gram+Spectrum+MSInit”,
and “Autocorr+MSInit”, all improve the original synthesis

8 We used 2000 iterations for a fair comparison between methods but
excellent results are obtained with 500 iterations.
9 The gradient computation exceeds the GPUmemory size which leads
to an important overhead.
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Fig. 2 Synthesis results using different methods for a given reference
of size 1048 × 1048

method “Gatys”. In the case of very regular textures, as in
Figs. 3, 4 and 5, our multi-scale method “XXX+MSInit”
yields better results, as will be confirmed by the user study
in Sect. 4.3.3. The method “Autocorr+MSInit” sometimes
yields results that are clearly better than others, especially
for very structured textures, as can be seen in Fig. 4 or on
the last line of Fig. 6. Nevertheless, it also sometimes fails as
in Fig. 2 and may produce artifacts on some examples. For
this reason and for human resources constraints, we choose,
among our methods, to only include “Gram+MSInit” and
“Gram+Spectrum+MSInit” in the user study presented in
Sect. 4.3.3.

4.3.1 Verbatim Copy

Texture synthesis methods should have the capacity to pro-
duce new images that are as diverse as possible. In the
pioneering work FRAME [43], this is achieved by maximiz-
ing the entropy. Similar ideas have recently been explored
in [6,26]. Following these ideas, texture synthesis methods
could be evaluated based on their capacity to maximize the
entropy under some given constraints. Such a quantitative
evaluation, however, is far from being trivial and probably
not tractable. In this section, we take a pragmatic and much
more modest way. We propose a simple way to evaluate the
tendency of methods to locally produce verbatim copy of the
input. This is a known default of patch-based methods, see,
e.g., [1,30].

Fig. 3 Synthesis results using different methods for a given reference
of size 1048 × 1048

Fig. 4 Synthesis results using different methods for a given reference
of size 1048 × 1048

For each pixel of a given synthesis result, we look for
its nearest neighbor in the input image. The notion of prox-
imity is defined by comparing small square neighborhoods
(patches) around each pixel. In (Fig. 7), we display the corre-
sponding displacement map. The used color scale is obtained
by assigning the x coordinate of the displacement map to red
and the y coordinate to blue. Verbatim copy of the input
appears as constant regions in these displacement maps. As
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Fig. 5 Synthesis results using different methods for a given reference
of size 1048 × 1048

expected, the only twomethods displaying large such regions
are patch-based methods. All others seem to produce a rea-
sonable amount of innovation, even though the multi-scale
method from [36] can very occasionally produce small ver-
batim copies, probably due to the strong constraints it puts
on the Gaussian pyramid.

In order to quantify the visual effect of the displacement
maps, we propose to measure the flat regions correspond-
ing to locally constant displacements. For each pixel of the
displacement map, we count how many of its neighbors (in
4-connexity) share its color value. Denoting n this number,
a score is defined as DS = 1 − n/N , where N is the total
number of investigated neighbors. The more verbatim copies
there are in the synthesis, the closest the score is to 0.

The boxplots of this score for the differentmethods and the
twenty reference images (Fig. 8) can be seen in Fig. 9. They
confirm the impression given by the displacement map that
the patch-based methods yield significantly more verbatim
copy than neural methods. It should be noted, however, that
the proposed methodology is relatively rough and does not
account either for small perturbations on the pixel positions
nor for noisy pixel values.

4.3.2 Feature-Based Evaluation

Feature-based evaluation of textures is not straightforward,
because no existing feature is considered as the reference
one. Moreover, such evaluations are inherently biased. In the
most extreme case, one could even try to optimize the chosen
features to synthesize new textures. In thiswork,we choose to

Fig. 6 Zoom-in of some of the texture synthesis results. For the MSInit
cases, we use K = 2. The region of each image framed by a red square
is shown in the row below (Color figure online)

rely on wavelet filters that both are classical texture features
and are not used in any of the considered methods. More
precisely, we rely on the texture features proposed in [7].
In this paper, two textures are compared by computing the
Kullback–Leibler divergence between parametric estimation
(using generalized Gaussians) of the marginal distributions
of wavelet coefficients.

In order to quantify the proximity of a synthesized texture
to the reference image, we propose to :

1. Compute the wavelets coefficients of the reference image
and the synthesized one (in our case we choose a
Daubechies 4 wavelets as in [7] with 8 scales instead
of 3, in order to account for large-scale structures).

2. For each scale and orientation, estimate the parameters
of a generalized Gaussian from the empirical distribution
of wavelets coefficients
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Fig. 7 Displacement map for results using different methods, for a
given reference image. An area with constant color indicates a verbatim
copy of the input. The synthesis can be found in 2

3. For each scale and orientations, compute the Kullback–
Leibler divergence between the estimated generalized
Gaussians (using a closed-form formula)

We display in Fig. 10 the boxplots of the log KL scores
over the 20 considered images, for the different methods.
For each box, the horizontal orange line corresponds to the
average result and the star to the median. On the average,
the best method for this evaluation scheme appears to be
“Gram+MSInit.” Then follow the two patch-based methods.
This is in agreement with results from the previous para-
graph, since indeed a verbatim copywill have a perfect score.
The next method is “Gram+Spectrum+MSInit,” followed by
“Snelgrove” and “Autocorr+MSInit.” This evaluation con-
firms the good quality of results produced by the proposed
“XXX+MSInit” methods, as well as “Snelgrove,” at least on

Fig. 9 Boxplots of the displacement score for the different methods on
the twenty reference images of size 1024 × 1024

Fig. 10 Boxplots of the displacement score for the different methods
on the twenty reference images of size 1024 × 1024

Fig. 8 Reference images used in the different evaluation methods
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Fig. 11 Example of the layout for one question

this image dataset containing a relatively high proportion of
structured textures.

4.3.3 Perceptual Evaluation of Texture Synthesis Methods

Next, we further evaluate the proposed methods by perform-
ing a medium scale user study. Indeed, as shown in [9],
feature-based methods such as the one of the previous sec-
tion may not correlate very well with human observations,
especially for long-range structures.

For ethical reasons, we decided not to rely on micro-work
platforms. Most users involved are volunteer PhD students
or researchers, which certainly induces some bias. The total
number of persons involved was 93, each having the possi-
bility to answer up to 40 questions.

Methodology Each question aims at comparing two methods
on a given texture. In order to evaluate results at different
scales, both the complete synthesis and a detail are presented
to the user, see Fig. 11. The evaluation is performed on the
twenty 1024×1024 images considered in this paper. In order
to get further insight on the methods, we have split the tex-
tures in two groups : regular and irregular, see Fig. 8.

Following the results of the previous sections, we chose to
include in the study thefive followingmethods : “Gatys” [13],
“Gram+MSInit,” “Gram+Spectrum+MSInit,” Snelgrove [36]
and “Deep Coor” [33]. The first four correspond to the
best feature-based score and visual impression. The last one
appears to us as the most directly related to the present work
in the literature, since it explicitly aims at preserving large-
scale structures through additional statistical constraints.

For each couple ofmethods (out of five) and each reference
image, four images are presented to the user, corresponding
to the two methods at two different scales (global and local).
For each scale, the user has to vote for the best method (the
“most similar” to the reference). We obtained 3170 answers
at each scale.

More details about this methodology can be found in
Annex 1.1.

In order to quantify the results of this study, we rely on
the Bradley–Terry model, as used in other perceptual study,
see [40]. This model gives us a performance score βi ∈ R

per method, computed with the votes from the users. The
outcome of a duel between methods i and j is determined
by βi − β j . More details about this statistical model can be
found in Annex 1.2.

Duel Results First, we can consider all the duels between all
pairs of methods and all reference images, either from the
complete set (20 images) or from the subsets of regular and
irregular images separately. Results can be averaged for the
global and local scale or treated separately. The results can
be found in Figs.12, 13 and 14.

Overall, the two best methods for this evaluation appear
to be “Gram+MSInit” and “Gram+Spectrum+MSInit.”

For the global scale, there is a draw for the complete
dataset and for the irregular images, while “Gram+Spectrum
+MSInit” wins on the regular images. For the local scale,
“Gram+MInit” always win.

From this, we may deduce that the spectrum constraint
may be useful for preserving large-scale structure of reg-
ular textures, possibly at the price of a slight degradation
at a more local scale. For more irregular textures, method
“Gram+MSInit” should be preferred. When we consider
all images and both scales (Fig. 12), we can extract a full
ranking : “Gram+MSInit” > “Gram+Spectrum+MSInit” >

Snelgrove > Gatys > Deep Cor.
WinningProbabilityAnalternative evaluation consists in cal-
culating the probability that a method i is chosen among
all candidates. This “winning probability” Wi is defined in
Annex 1.3. Thesewinning probabilities are displayed in Figs.
15, 16, and 17 and confirm the dual results (Figs. 12, 13, 14).

4.4 Influence of Parameters

In this section, we display experiments illustrating the effects
of two parameters of the proposed method : K , the number
of considered scales, and β, the weighting of the spectrum
term when using the method “Gram+Spectrum+MSInit.”

4.4.1 Multi-scale Strategy

In Fig. 18, we display synthesis results with K ranging from
0 (original method from [13]) to 4. The quality of results
increases up to K = 2. This confirms the fact that the size
of the filters in the VGG19 network is too small to describe
large scales. It also illustrates the fact that the VGG filters are
versatile and provide good features at different scales, since
the network has been trained on 224× 224 input images. An
interesting experiment in this respect would be to synthesize
textures using the scale-invariant features from [41].
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Fig. 12 Difference between the methods strengths (βi −β j ) (Eq. (1.1))
Index i corresponds to rows and index j to columns. When |βi −β j | >

1.96ŝei j the method i is considered as beating the method j and the cell

is displayed in green. In the opposite case, the cell is red. When the cell
is white, the difference is not significant (Color figure online)

Fig. 13 Difference between the methods strengths (βi −β j ) (Eq. (1.1))
Index i corresponds to rows and index j to columns. When |βi −β j | >

1.96ŝei j , the method i is considered as beating the method j and the

cell is displayed in green. In the opposite case, the cell is red. When the
cell is white, the difference is not significant (Color figure online)

Fig. 14 Difference between the methods strengths (βi −β j ) (Eq. (1.1))
Index i corresponds to rows and index j to columns. When |βi −β j | >

1.96ŝei j , the method i is considered as beating the method j and the

cell is displayed in green. In the opposite case, the cell is red. When the
cell is white, the difference is not significant (Color figure online)

Fig. 15 Winning probabilities Wi with standard error �i for the different methods for the global case
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Fig. 16 Winning probabilities Wi with standard error �i for the different methods for the local case

Fig. 17 Winning probabilities Wi with standard error �i for the different methods for both global and local cases

From K = 3, the method starts to produce results that are
very similar to the reference, the case K = 4 being almost
a copy of the reference. This may be due to the fact that in
these cases, the number of parameters of the synthesis model
is up to two orders of magnitude larger than the number of
pixels of the coarse image. In other words, the multi-scale
strategy reduces too much the solution space for this opti-
mization problem. In practice, K = 2 appears a good choice
for synthesizing 1024 × 1024 images.

4.4.2 Weighting of the Spectrum Constraint

In Fig. 19, we display the result of the synthesis for different
values of β, the parameter weighting the spectrum constraint,
using the method “Gram+Spectrum+MSInit.” For the struc-
tured textures for which the spectrum term is useful, the best
results are obtained for a relatively large β, of the order of
105 for the brick image (second column). For more irregu-
lar textures, such high values may deteriorate results. This is
in agreement with the results from the previous evaluations,

where a value β = 105 was used. The problem of automati-
cally setting this parameter is open.

4.5 High-Resolution Synthesis

We conclude this experimental section by showing synthesis
results of higher resolution (2048×2048).We considermeth-
ods “Gatys”, “Gram+MSInit”, “Gram+Spectrum+MSInit”
(both using K = 3). The results can be seen in Figs. 20
and 21. More results can be seen in Supplementary Materi-
als (Sect. 3). Unsurprisingly the interest of the multi-scale
schemes is even stronger in this case and the mono-scale
method fails. Figure 21 shows the ability of the spectrum
constraint to enforce large-scale regularity at this resolution.

5 Conclusion

In this paper, we have shown how a multi-resolution frame-
work and additional statistical constraints related to long-
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Fig. 18 Synthesis results using different numbers of scales K in the
multi-scale strategy. The case K = 0 corresponds to the originalmethod
from [13]

Fig. 19 Synthesis results using different β in Formula (3.4) (original
can be seen in Fig. 18), β = 0, 10−1, 102, 105, 108 with the multi-scale
strategy and K = 2

Fig. 20 Synthesis results using different methods for one given refer-
ence of size 2048 × 2048

Fig. 21 Synthesis results using different methods for a given reference
of size 2048 × 2048

range dependency enable one to significantly improve texture
synthesis results in comparison to the seminal work [13],
especially for high-resolution and possibly regular textures.
The proposed framework is generic and could be associ-
ated with other statistical constraints such as co-occurrence
matrices as proposed in [5]. A natural extension would be
to investigate the use of such multi-resolution strategies for
style transfer for high-resolution images, following [14].
More generally, most generative methods dealing with high-
resolution images incorporate more or less explicitly some
multi-resolution steps in their synthesis process. This is,
for instance, the case for the very efficient StyleGan [22]
approach to face synthesis. In this context, it is of great
interest to investigate generic procedures to develop multi-
resolution frameworks for such generative approaches.

A strong limitation of the neural methods investigated in
this work is the unreasonably large number of parameters of
the models. In this respect, the next question is not “what set
of statistical constraint is sufficient,” but “what is the mini-
mal set of statistical constraints” needed to produce realistic
synthesis. Some works [6] have shown that second order
statistics between features are not necessary to get satisfy-
ing results. This, combined with the highly redundant nature
of networks such as VGG19, trained for recognition, sug-
gests that much room is available to reduce the number of
parameters in these models.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s10851-022-01078-
y.
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